Precise Time and Space Simulatable Zero-Knowledge

نویسندگان

  • Ning Ding
  • Dawu Gu
چکیده

Traditionally, the definition of zero-knowledge states that an interactive proof of x ∈ L provides zero (additional) knowledge if the view of any polynomial-time verifier can be reconstructed by a polynomial-time simulator. Since this definition only requires that the worst-case running-time of the verifier and simulator are polynomials, zero-knowledge becomes a worst-case notion. In STOC’06, Micali and Pass proposed a new notion of precise zero-knowledge, which captures the idea that the view of any verifier in every interaction can be reconstructed in (almost) the same time (i.e., the view can be “indistinguishably reconstructed”). This is the strongest notion among the known works towards precislization of the definition of zero-knowledge. However, as we know, there are two kinds of computational resources (i.e. time and space) that every algorithm consumes in computation. Although the view of a verifier in the interaction of a precise zero-knowledge protocol can be reconstructed in almost the same time, the simulator may run in very large space while at the same time the verifier only runs in very small space. In this case it is still doubtful to take indifference for the verifier to take part in the interaction or to run the simulator. Thus the notion of precise zero-knowledge may be still insufficient. This shows that precislization of the definition of zero-knowledge needs further investigation. In this paper, we propose a new notion of precise time and space simulatable zero-knowledge (PTSSZK), which captures the idea that the view of any verifier in each interaction can be reconstructed not only in the same time, but also in the same space. We construct the first PTSSZK proofs and arguments with simultaneous linear time and linear space precisions for all languages in NP. Our protocols do not use noticeably more rounds than the known precise zero-knowledge protocols, and the probability analysis of the successful extraction of the new simulation strategy may be of independent interests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unprovable Security of Two-Message Zero Knowledge

Goldreich and Oren (JoC’94) show that only trivial languages have 2-message zero-knowledge arguments. In this note we consider weaker, super-polynomial-time simulation (SPS), notions of zero-knowledge. We present barriers to using black-box reductions for demonstrating soundness of 2-message protocols with efficient prover strategies satisfying SPS zero-knowledge. More precisely, we show that a...

متن کامل

Simulatable Commitments and Efficient Concurrent Zero-Knowledge

We define and construct simulatable commitments. These are commitment schemes such that there is an efficient interactive proof system to show that a given string c is a legitimate commitment on a given value v, and furthermore, this proof is efficiently simulatable given any proper pair (c, v). Our construction is provably secure based on the Decisional Diffie-Hellman (DDH) assumption. Using s...

متن کامل

Fully Simulatable Quantum-Secure Coin-Flipping and Applications

We propose a coin-flip protocol which yields a string of strong, random coins and is fully simulatable against poly-sized quantum adversaries on both sides. It can be implemented with quantum-computational security without any set-up assumptions, since our construction only assumes mixed commitment schemes which we show how to construct in the given setting. We then show that the interactive ge...

متن کامل

Simulatable VRFs with Applications to Multi-theorem NIZK

This paper introduces simulatable verifiable random functions (sVRF). VRFs are similar to pseudorandom functions, except that they are also verifiable: corresponding to each seed SK, there is a public key PK, and for y = FPK(x), it is possible to prove that y is indeed the value of the function seeded by SK. A simulatable VRF is a VRF for which this proof can be simulated, so a simulator can pr...

متن کامل

Compact E-Cash and Simulatable VRFs Revisited

Efficient non-interactive zero-knowledge proofs are a powerful tool for solving many cryptographic problems. We apply the recent Groth-Sahai (GS) proof system for pairing product equations (Eurocrypt 2008) to two related cryptographic problems: compact e-cash (Eurocrypt 2005) and simulatable verifiable random functions (CRYPTO 2007). We present the first efficient compact e-cash scheme that doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009